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Abstract. Magnetic resonance imaging (MRI) is the primary method for non-invasive investigations of the human brain in 

health, disease, and development, but yields data that are difficult to interpret whenever the millimeter-scale voxels contain 

multiple microscopic tissue environments with different chemical and structural properties. We propose a clinically feasible 

MRI framework to quantify the microscopic heterogeneity of the living human brain as spatially resolved five-dimensional 15 

relaxation-diffusion distributions by augmenting a conventional diffusion-weighted imaging sequence with signal encoding 

principles from multidimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, relaxation-diffusion 

correlation methods from Laplace NMR of porous media, and Monte Carlo data inversion. The high dimensionality of the 

distribution space allows resolution of multiple microscopic environments within each heterogeneous voxel as well as their 

individual characterization with novel statistical measures that combine the chemical sensitivity of the relaxation rates with 20 

the link between microstructure and the anisotropic diffusivity of tissue water. 

1 Introduction 

The structure of the brain is shaped by both disease and normal developments on a wide range of length scales. To measure 

and map the cellular architecture and molecular composition of the living human brain is a challenging experimental 

endeavor that promises far-reaching implications for both clinical diagnosis and our understanding of normal brain function. 25 

Over the last decades, Magnetic Resonance Imaging (MRI) methods have been crucial for the progress of neuroanatomical 

studies (Lerch et al., 2017). Most clinical MRI applications rely on detecting 1H nuclei of water molecules to produce three-

dimensional images of the human brain with a spatial resolution on the millimeter scale. Even though the attainable 

resolution is clearly insufficient for direct observation of individual cells, chemical and cellular features can be investigated 

by probing their effect on magnetic resonance observables such as nuclear relaxation rates (Halle, 2006) and the translational 30 

diffusivity (Callaghan, 2011) of water. Relaxation and diffusion parameters can thus indirectly report on various microscopic 
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properties, including cell density (Padhani et al., 2009), orientation of nerve fibers (Basser and Pierpaoli, 1996), and 

presence of nutrients (Daoust et al., 2017). Current quantitative relaxation (Tofts, 2003) and diffusion (Jones, 2010) MRI 

observables are exquisitely sensitive to the cellular processes associated with knowledge acquisition (Zatorre et al., 2012), 

neuropsychiatric disorders (Kubicki et al., 2007), and different tumor types (Nilsson et al., 2018a), but suffer from poor 35 

specificity and the same experimental data may support several distinct biological scenarios (Zatorre et al., 2012). 

More detailed information can be obtained by taking into account that each MRI voxel comprises hundreds of thousands of 

cells with potentially different properties, implying that the per-voxel signal may include contributions from multiple 

microenvironments with distinct values of the MRI observables. To resolve the various microenvironments within a single 

voxel remains a highly challenging problem of vital importance for the progression of quantitative MRI studies. The signals 40 

from heterogeneous materials are often approximated as integral transformations of nonparametric distributions of relaxation 

rates or diffusivities (Istratov and Vyvenko, 1999), which may be estimated by Laplace inversion of data acquired as a 

function of the relevant experimental variable (Whittall and MacKay, 1989). Within the context of human brain MRI, the 

components of the distributions have been assigned to water populations residing in specific tissue microenvironments such 

as myelin (Mackay et al., 1994) and tumors (Laule et al., 2017). The power to resolve and individually characterize the 45 

different components can be boosted by combining multiple relaxation- and diffusion-encoding blocks and analyzing the 

data as joint probability distributions of the relevant observables (English et al., 1991). These ideas follow the principles of 

multidimensional nuclear magnetic resonance (NMR) spectroscopy and form the basis for multidimensional Laplace NMR 

which has become routine in the field of porous media (Galvosas and Callaghan, 2010;Song, 2013) and is now being 

combined with MRI (Zhang and Blumich, 2014;Benjamini and Basser, 2017). Recently, similar relaxation-diffusion 50 

correlation protocols have been translated to in vivo studies using model-based rather than nonparametric data inversion (De 

Santis et al., 2016;Veraart et al., 2017). So far, relaxation-diffusion correlation studies have relied on the Stejskal-Tanner 

experiment (Stejskal and Tanner, 1965), a spin-echo diffusion-weighted sequence that has been in use for more than 50 years 

and where the signal is encoded for diffusion along a single axis using a pair of collinear magnetic field gradient pulses. The 

limitations of the conventional experimental design become apparent when considering a white matter voxel comprising 55 

anisotropic domains with multiple orientations. When projected onto the measurement axis defined by the magnetic field 

gradients, the combination of diffusion anisotropy and orientation dispersion gives rise to a broad distribution of effective 

diffusivities (Topgaard and Söderman, 2002) that is challenging to retrieve with nonparametric Laplace inversion and, most 

importantly, impossible to differentiate from a spread of isotropic diffusivities (Mitra, 1995). Consequently, despite the fact 

that the relaxation-diffusion correlation yields more detailed information than conventional quantitative MRI, the inherent 60 

limitations of the Stejskal-Tanner experiment prevent unambiguous discrimination between isotropic and anisotropic 

contributions to the diffusivity distributions as well as model-free resolution of tissue microenvironments for heterogeneous 

anisotropic materials such as brain tissue. 

We have recently shown that data acquisition and processing schemes for correlating isotropic and anisotropic nuclear 

interactions in multidimensional solid-state NMR spectroscopy (Schmidt-Rohr and Spiess, 1994) can be translated to 65 
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diffusion NMR (de Almeida Martins and Topgaard, 2016), relaxation-diffusion correlation NMR (de Almeida Martins and 

Topgaard, 2018), and diffusion MRI (Topgaard, 2019), yielding nonparametric diffusion tensor distributions (Jian et al., 

2007) with resolution of multiple isotropic and anisotropic diffusion components. These “multidimensional diffusion MRI” 

methods (Topgaard, 2017) rely on varying both the amplitude and orientation of the magnetic field gradients within a single 

encoding block in order to mimic the effects of sample reorientation (Frydman et al., 1992) and rotor-synchronized radio 70 

frequency pulse sequences (Gan, 1992) in multidimensional solid-state NMR to target specific aspects of the tensorial 

property being investigated. Here, we incorporate these ideas into a clinically feasible relaxation-diffusion correlation MRI 

protocol to quantify the microscopic heterogeneity of the living human brain. The suggested acquisition and analysis 

protocols resolve tissue heterogeneity on a five-dimensional space of transverse relaxation rates and axisymmetric diffusion 

tensors that report on the underlying chemical composition and microscopic geometry. Nonparametric relaxation-diffusion 75 

distributions are obtained for each voxel in the three-dimensional image using Monte Carlo data inversion to deal with the 

non-uniqueness of the Laplace inversion and estimate the uncertainty of quantitative parameters derived from the 

distributions (Prange and Song, 2009). Sub-voxel tissue environments are resolved without limiting assumptions on the 

number or properties of the individual components and characterized with statistical measures that have intuitive relations 

with the local microstructure. 80 

2 Methods 

2.1 Multidimensional relaxation-diffusion encoding 

Figure 1A displays a pulse sequence wherein the signal S(tE,b) from a given voxel is encoded for information about the 

transverse relaxation rate R2 and diffusion tensor D by the experimental variables echo time tE and diffusion encoding tensor 

b according to (de Almeida Martins and Topgaard, 2018) 85 

 (1) 

where P(R2,D) is a joint probability distribution of R2 and D, the kernel K(tE,b,R2,D) links the analysis space (R2,D) to the 

acquisition space (tE,b), S0 denotes the signal amplitude at  (tE = 0,b = 0), and Sym+
3 represents the mathematical space 

containing all 3×3 symmetric positive-definite matrices. The two sets of magnetic field gradient waveforms define an 

axially-symmetric b-tensor that is parameterized by its trace (b), orientation (Q,F), and normalized anisotropy (bD) (Eriksson 

et al., 2015), the latter controlling the influence of diffusion anisotropy on the detected signal in a manner corresponding to 90 

the effect of the angle between the main magnetic field and the rotor spinning axis in solid-state NMR (Frydman et al., 

1992). While conventional diffusion encoding is limited to a single b-tensor “shape” (bD = 1), we have shown that variation 

of bD enables model-free separation and quantification of the isotropic and anisotropic contributions to the diffusion tensors 

(de Almeida Martins and Topgaard, 2016). In this work, we used the numerically optimized gradient waveforms displayed in 

S τE ,b( )
S0

= P(R2 ,D) K (τE ,b,R2 ,D)D∈Sym3
+∫

0

+∞

∫ dDdR2 ,
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Figure 1B (Sjölund et al., 2015) to generate b-tensors at four distinct values of bD. In common with conventional diffusion 95 

MRI, our method requires a minimum echo time of ~ 50 ms to accommodate diffusion encoding, causing the signal 

contributions from components with R2 > 60 s-1 to be reduced to less than 5% of their initial amplitude. This means that the 

proposed protocol would require substantial signal averaging in order to quantify the fractions of fast relaxing components, 

thus precluding a mapping of myelin water (R2 ≈ 70 s-1) – one of the primary focuses of early multi-echo MRI methods 

(Mackay et al., 1994) –  within a clinically viable time. 100 

Throughout the signal encoding process, the relaxation and diffusion of water are both affected by molecular exchange 

between chemically different sites and interactions with cell membranes. Averaging all these complex effects into sets of 

effective relaxation rates and apparent diffusion tensors, sub-voxel composition can be reported as a collection of 

independent tissue microenvironments, each of which characterized by a set of (R2,D) coordinates (de Almeida Martins and 

Topgaard, 2018). Assuming axial symmetry, the various microscopic diffusion tensors are parameterized by four 105 

independent dimensions: two eigenvalues corresponding to the axial and radial diffusivities, D|| and D^, and the polar and 

azimuthal angles, q and f, describing the orientation of D relative to the laboratory frame of reference. The D|| and D^ 

diffusivities can be combined to define measures of isotropic diffusivity, Diso = (D|| + 2D^)/3, and normalized diffusion 

anisotropy, DD = (D|| – D^)/3Diso (Eriksson et al., 2015), which report on the “size” and “shape” of the corresponding 

microscopic diffusion patterns (Topgaard, 2017). Tissue microscopic heterogeneity is therefore characterized with 110 

P(R2,Diso,DD,q,f) distributions, whose dimensions directly correspond to those of the 5D acquisition space (tE,b,bD,Q,F): 

 (2) 

The relaxation-diffusion encoding kernel is defined as 

 (3) 

where P2(x) = (3x2-1)/2 denotes the 2nd Legendre polynomial, and b is the arc-angle between the major symmetry axes of b 

and D, given by cosb = cosQ cosq + cos(F-f) sinQ sinq. According to Eq. (3), each (tE,b,bD,Q,F) coordinate establishes 

correlations across the separate dimensions of the R2-D space. Consequently, sampling various combinations of echo times 115 

and b-tensor parameters facilitates a comprehensive mapping of tissue-specific relaxation and diffusion properties. 

2.2 MRI measurements 

A healthy volunteer (female, 31 years) was scanned on a Siemens Magnetom Prisma 3T system equipped with a 20-channel 

receiver head-coil, and capable of delivering gradients of 80 mT/m at the maximum slew rate of 200 T/(m×s). The 

S τE ,b,b
Δ
,Θ,Φ( )

S0

= K τE ,b,b
Δ
,Θ,Φ,R2 ,Diso ,D

Δ
,θ ,φ( )

0

2π

∫
0

π

∫
−1/2

1

∫
0

∞

∫
0

∞

∫

                              ×P R2 ,Diso ,D
Δ
,θ ,φ( )dφ sinθ  dθ dD

Δ
dDiso dR2 .

K (...) = exp −τER2( )exp −bDiso 1+ 2bΔDΔ
P2 cosβ( )⎡

⎣
⎤
⎦( ) ,
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measurements were approved by a local Institutional Review Board (Partners Healthcare System), and the research subject 120 

provided written informed consent prior to participation.  

Experimental data were acquired using the prototype spin-echo sequence (Lasič et al., 2014) and gradient waveforms shown 

in Figure 1. All images were recorded using a repetition time of 3 s, and an echo-planar readout with a 220×220×66 mm3 

field of view, spatial resolution of 2×2´6 mm3, and a partial Fourier factor of 6/8. The depicted waveforms give four distinct 

b-tensor anisotropies (bD = {–0.5, 0.0, 0.5, 1.0}), which were probed at varying combinations of echo-times, b-values, and b-125 

tensor orientations. The waveforms giving bD = –0.5, 0.0, and 0.5 (see Figure 1B) were calculated with a numerical 

optimization package (Sjölund et al., 2015) (https://github.com/jsjol/NOW), including compensation for the effects of 

concomitant gradients (Szczepankiewicz et al.). This procedure yielded a pair of asymmetric gradient waveforms lasting 

30.8 ms and 25.0 ms, separated by approximately 8.0 ms. Linear encoding (bD = 1) was implemented with two separate 

gradient waveforms; a symmetric bipolar gradient waveform whose encoding blocks lasted t = 25.1 ms and were separated 130 

by 8.0 ms (see Figure 1B), and a pair of t = 15.1 ms single-pulsed gradients bracketing a time-period of 13.7 ms. The 

spectral profile of the bipolar gradient waveform was tuned to that of the asymmetric gradient waveforms in order to reduce 

the influence of time-dependent diffusion (Woessner, 1963;Callaghan and Stepišnik, 1996). 

A total of 852 images were recorded at different combinations of (tE,b,bD,Q,F) throughout the entire scan time of 45 

minutes. The acquisition protocol is summarized in Figure 2A. Briefly, bD = 1 was acquired over 72 directions distributed 135 

over four b-values (6, 10, 16, and 40 directions at b = 0.1, 0.7, 1.4, and 2×109 sm–2, respectively), both bD = –0.5, and 0.5 

were collected across 64 directions spread out over four b-values (6, 10, 16, and 32 directions at, respectively, b = 0.1, 0.7, 

1.4, and 2×109 sm–2), and bD = 0 was acquired for a single gradient waveform orientation, repeated 6 times over six b-values 

(b = 0.1, 0.3, 0.7, 1, 1.4, and 2×109 sm–2). For each (b,bD) coordinate, the set of directions was optimized using an 

electrostatic repulsion scheme (Bak and Nielsen, 1997;Jones et al., 1999). The various (b,bD,Q,F) sets were then repeatedly 140 

acquired at three different echo-times (tE = 80, 110, and 150 ms) using the spectrally-tuned waveforms. The non-tuned 

Stejskal-Tanner waveform was used to acquire bD = 1 data at tE = 60 and 80 ms. Comparison between data acquired with the 

bipolar and the Stejskal-Tanner gradient waveforms at tE = 80 ms allowed us to assess the validity of the Gaussian diffusion 

approximation (Callaghan and Stepišnik, 1996). The acquired images were not subjected to any additional corrections (e.g. 

denoising or motion correction) before data inversion. 145 

2.3 Nonparametric Monte Carlo inversion 

Algorithms designed to solve Eq. (2) have been reviewed in both general (Istratov and Vyvenko, 1999) and magnetic 

resonance (Mitchell et al., 2012) literature. While classical inversion methods can be successfully used to estimate the 5D 

P(R2,Diso,DD,q,f) distribution, they become memory costly at the high dimensionality of our protocol. To circumvent this 

difficulty, we introduced an inversion approach wherein our correlation space is explored through a directed iterative 150 
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algorithm, explained in ref. (de Almeida Martins and Topgaard, 2018). The algorithm starts by randomly selecting 200 

points from the (0 < log(R2/s-1) < 1.5, –10 < log(D||/m2s-1) < –8.5, –10 < log(D^/ m2s-1) < –8.5, 0 < cosq < 1, 0 < f < 2p) 

space. A discrete P(R2,D) distribution is then estimated by solving Eq. (2) via a non-negative least squares algorithm. Points 

with non-zero weights are stored and subjected to a loop where they sequentially compete with newly generated points in the 

5D distribution space. Following 20 rounds, the surviving points are selected and subjected to small random mutations. 155 

Another iteration is then initialized, wherein mutated points compete amongst themselves for 20 additional rounds in order to 

find the local solution with the lowest residual value. A final solution is then estimated by selecting the 10 (R2,D||,D^,q,f) 

coordinates with the highest weights.  

The procedure described above is performed voxel-wise, resulting in an array of spatially resolved P(R2,D||,D^,q,f) discrete 

distributions. Owing to the stochastic nature of the inversion protocol, we may fail at retrieving a non-trivial solution, which 160 

produces a small number of randomly located black voxels in the parameter maps. To correct for this, we combine the points 

from each voxel with the ones from its six nearest-neighbors, subsequently fitting the set of 7×10 points to the underlying 

signal in order to find the 10 most likely points. The new (R2,D||,D^,q,f) set is fitted to the signal, and the resulting P(R2,D) 

is taken as the solution of the analyzed voxel. Finally, the P(R2,D||,D^,q,f) distribution is mapped onto the (R2,Diso,DD,q,f) 

space. 165 

Following the works of Prange and Song (Prange and Song, 2009), we replace traditional regularization constraints (Whittall 

and MacKay, 1989) with an unconstrained Monte Carlo approach that estimates voxel-wise ensembles of N distinct P(R2,D) 

solutions consistent with the primary data (de Almeida Martins and Topgaard, 2018). In this study, we estimated ensembles 

of N = 96 solutions per voxel. The level of dispersion within a given solution set characterizes the uncertainty of the 

inversion procedure, and can thus be used to estimate the uncertainty of any quantities derived from P(R2,D) (Prange and 170 

Song, 2009;de Almeida Martins and Topgaard, 2018). Readers interested in a MATLAB implementation of the algorithm 

are directed to our GitHub repository https://github.com/JoaoPdAMartins/md-dmri (Nilsson et al., 2018b). 

3 Results 

3.1 Spatially-resolved 5D relaxation-diffusion distributions 

The proposed acquisition protocol translates into distinctive signal decay curves for each of the main components of the 175 

human brain. Indeed, voxels encompassing either white matter WM, gray matter GM, or cerebrospinal fluid CSF, are all 

characterized by clearly distinct signal patterns (see Figure 2B). The observed differences can be used to infer the gross R2-

D properties of the various cerebral constituents: WM signals are highly sensitive to both bD and (Q,F), indicative of 

anisotropic diffusion along coherently aligned microscopic domains; GM signal patterns are rather insensitive to bD and 

(Q,F), consistent with isotropic diffusion; and CSF data decays quickly with increasing b while remaining mostly unaffected 180 

by the other acquisition variables, features that suggest an isotropic medium characterized by relatively low R2-values. 
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Voxels comprising mixtures of WM, GM, and/or CSF generate patterns that can be interpreted as a superposition of the 

signal data from the pure components. 

Spatially resolved 5D R2-D nonparametric distributions are retrieved from the experimental data using the model-free 

inversion approach described in the Methods section. Figure 2C displays the solution ensembles for voxels containing WM, 185 

GM, and CSF, as well as combinations of those components: WM+GM, WM+CSF, and GM+CSF. Brain tissue possesses 

various microscopic components, whose relaxation and diffusion properties differ over various orders of magnitude. 

Therefore, tissue heterogeneity is more suitably described with logarithmic distributions, where pore anisotropy is 

parameterized with log(D||/D^) instead of DD. The distinctive characters of the raw signal patterns in Figure 2B result in 

unique voxel-wise distributions that capture the gross microscopic features of the main cerebral components. Namely, CSF is 190 

characterized by high Diso, low R2, and D|| ~ D^; in contrast, GM and WM both exhibit lower Diso and higher R2, with WM 

being differentiated by its high D||/D^. As expected, voxels comprising mixtures of WM, GM, and CSF yield a linear 

combination of the distributions from the individual components. 

Voxels containing pure GM or WM yield bimodal and unimodal distributions, respectively, that feature clusters of points 

covering a significant range of the R2-D space. Because both tissue types comprise a plethora of cells with varying 195 

geometries or chemical compositions (e.g. axons with various amounts of myelin, dendrites, or glial cells), the observed 

spread may be interpreted as a direct consequence of the underlying cellular heterogeneity. However, similar broad 

distributions were also observed in spectroscopic multidimensional diffusion correlation measurements of discrete-

component phantoms (de Almeida Martins and Topgaard, 2016, 2018), hinting that the solution spread additionally reflects 

the measurement and inversion uncertainty. This intrinsic uncertainty masks the effects of finer cellular details like the intra- 200 

and extra-axonal components modeled in previous diffusion-relaxation correlation MRI methods (Veraart et al., 2017). The 

bimodality of the GM distribution is attributed to the fact that prolate (DD > 0, D||/D^ > 1) and oblate (DD < 0, D||/D^ < 1) 

diffusion tensors with similar Diso yield signal patterns that are only clearly discerned when DD > 0.5 or, equivalently, D||/D^ 

> 4 (Eriksson et al., 2015). Earlier MRI studies demonstrated that water diffusion in GM tissue is consistent with a low, yet 

non-negligible, anisotropy (Assaf, 2018). Our results are consistent with those findings, with the intrinsically low anisotropy 205 

preventing a distinction between prolate or oblate solutions, and consequently producing a nearly symmetric spread of 

components around the log(D||/D^) = 0 plane. 

3.2 Statistical measures of tissue heterogeneity 

The R2-D distribution ensembles provide a wealth of information that is challenging to visualize in spatially resolved 

datasets with large image matrices. Drawing inspiration from the field of porous media, where ensembles of distributions 210 

have been converted into ensembles of scalar parameters such as total porosity or fraction of bound fluid (Prange and Song, 

2009), we extract statistical measures from the R2-D distributions. A multitude of statistical functionals can be computed 

from the same distribution, meaning that the per-voxel P(R2,D) ensembles generate a comprehensive set of distinct voxel-
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wise parameters. As shown in Figure 3, the Monte Carlo realizations of P(R2,D) are translated into ensembles of statistical 

measures, with 96 individual estimates being extracted for each measure. For compactness, the ensembles of statistical 215 

parameters are reduced to an average á·ñ and a dispersion measure s[·] that is interpreted as the uncertainty of the estimated 

functional (Prange and Song, 2009). To render the results more robust to outliers, we report á·ñ as the ensemble median and 

estimate s[·] as a median absolute deviation. The calculation of averages (as measured by the median) reduces the 

underlying ensemble of solutions into a single scalar, and allows us to convey intra-voxel composition with parameter maps 

of average mean values áE[x]ñ, average variances áVar[x]ñ and average covariances áCov[x,y]ñ of all the relevant dimensions 220 

of the 5D R2-D space (see Figure 3). All of the statistical measures derived in this work parameterize diffusion tensor 

anisotropy with DD2 rather than DD; this is motivated by the intrinsic difficulty of distinguishing between prolate and oblate 

tensors (Eriksson et al., 2015). 

The three maps in the first column of Figure 3 provide a rough spatial overview of the principal tissue types: áE[R2]ñ and 

áE[Diso]ñ clearly identify CSF-rich areas (low áE[R2]ñ and high áE[Diso]ñ), while high áE[DD2]ñ values separate WM from the 225 

two other main cerebral tissues. However, mean parameter maps alone cannot identify or characterize intra-voxel 

heterogeneity, and their use should be complemented with dispersion measures including, but not limited to, the (co)variance 

elements displayed in columns 2 and 3 of Figure 3. For example, voxels surrounding the ventricles do not show a truly 

distinctive feature in maps of mean values but are characterized by non-zero covariance matrix elements. To understand the 

origin of the non-zero values, let us focus on the WM+CSF and GM+CSF voxels indicated in Figure 3. The corresponding 230 

P(R2,D) distributions (displayed in Figure 2C) comprise two populations at distant (R2,Diso) coordinates, and both voxels are 

thus characterized by high values of Var[R2] and Var[Diso] (see histograms of Figure 3). As CSF and GM are both 

characterized by a low anisotropy, GM+CSF exhibits low values of Var[DD2]; in contrast, WM+CSF displays a significant 

dispersion along DD2, which results in high Var[DD2] values. Covariance measures inform about the correlations across the 

various dimensions of the R2-D space. In WM+CSF distributions, for instance, higher values of diffusion anisotropy are 235 

correlated with higher R2 and lower Diso, which results in positive Cov[R2,DD2] and negative Cov[Diso,DD2]. The elevated 

áVar[R2]ñ and áVar[Diso]ñ, and negative áCov[R2,Diso]ñ values found in the ventricular regions are thus interpreted as a 

product of sub-voxel combinations of CSF with other components. A combination of high áVar[DD2]ñ, positive 

áCov[R2,DD2]ñ, and negative áCov[Diso,DD2]ñ locate WM+CSF voxels in those same regions, while low values of áVar[DD2]ñ 

indicate the existence of deep gray matter in the vicinity of the ventricles.  240 

The maps displayed in Figure 3 can also be used to identify voxels containing WM+GM mixtures. Because WM and GM 

distributions are characterized by similar values of R2 and Diso, WM+GM voxels result in nearly zero values of Var[R2], 

Var[Diso], Cov[Diso,y] and Cov[R2,y]. Instead, WM+GM voxels are signaled by finite values of áVar[DD2]ñ, originated by the 

log(D||/D^) spread observed in the underlying R2-D distribution (see the WM+GM distribution in Figure 3C). 
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3.3 Bin-resolved metrics of tissue heterogeneity 245 

A more detailed picture of intra-voxel heterogeneity is obtained by dividing the distribution space into smaller subspaces 

(‘bins’). Based on the diffusion properties of P(R2,D) distributions from voxels containing a single tissue type, we define 

three bins that loosely correspond to the main brain components (see Figure 4A). The ‘Big’ bin (–3.5 < log(D||/D^) < 3.5, –

8.7 < log(Diso/m2s-1) < –8, –0.5 < log(R2/s-1) < 2) contains CSF contributions, whereas the ‘Thin’ (0.6 < log(D||/D^) < 3.5, –

10 < log(Diso/m2s-1) < –8.7, –0.5 < log(R2/s-1) < 2)  and ‘Thick’ (–3.5 < log(D||/D^) < 0.6, –10 < log(Diso/m2s-1) < –8.7, –0.5 250 

< log(R2/s-1) < 2) bins capture the signal fractions from WM and GM, respectively. The names ‘Big’, ‘Thin’, and ‘Thick’ are 

inspired by the geometric properties of the microscopic diffusion tensors that are captured by each individual bin. Visual 

inspection of Figure 4B reveals that the spatial distributions of the three bins are consistent with the expected distributions 

of the corresponding tissues, providing more evidence that the coarsely defined bins allow a separation of the main cerebral 

constituents. Parameter maps of the per-bin means of the relaxation and diffusion properties are more straightforwardly 255 

interpreted than the heterogeneity measures derived from the entire distribution space: for example, the deep gray matter 

inferred in the previous paragraph is easily identifiable at the center (white arrows) of the ‘Thick’ maps of Figure 4B. 

Further, the correlations across the various dimensions of the diffusion space allow the resolution of subtle differences in 

relaxation rates. Focusing on the first column of Figure 4B, we notice that the ‘Thick’ fraction exhibits a slightly lower R2 

rate than that of the ‘Thin’ fraction. This behavior is in accordance with previous literature (Tofts, 2003) and is consistently 260 

observed across the entire slice. 

Global and bin-resolved averages for all the analyzed voxels of the entire 3D image matrix are compiled in Figure 5, where 

per-voxel average means of R2, Diso, and DD2 are plotted against their respective uncertainties, s[E[R2]], s[E[Diso]], and 

s[E[DD2]], and average signal amplitudes áS0ñ. Although the displayed statistical analysis is restricted to mean values, similar 

calculations can be done using any other scalar measure derived from the 5D R2-D distributions. Examination of the scatter 265 

plots in Figure 5 shows that microscopic populations with low signal fractions generate statistical measures with 

significantly higher uncertainties. While no immediate correlation is discerned between the estimated mean values and their 

corresponding uncertainty, the negative correlation between uncertainty and signal fractions introduces a significant 

dispersion of áE[x]ñ at áS0ñ/max(áS0ñ) < 0.1 (see, for example, the Diso scatterplots for the “Thin” and “Thick” populations). 

Despite the lower precision at low áS0ñ, the various average mean values are observed to be nearly constant throughout the 270 

áS0ñ/max(áS0ñ) > 0.1 region; the only exception is áE[DD2]ñ for the ‘Thin’ fraction, which shows a higher susceptibility to 

noise as evidenced by its positive correlation with áS0ñ. 

The minor differences between the relaxation rates of the ‘Thin’ and ‘Thick’ components are also observed in the scatter 

plots of Figure 5. A more detailed analysis shows that distinct R2-rates can be consistently detected in voxels containing 

GM+WM mixtures (see Figure 6A), where conventional 1D R2 distributions fail to resolve the subtle differences between 275 

components (Whittall et al., 1997). The second and third columns of Figure 6A display mixed voxels, where the ‘Thin’ and 
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‘Thick’ populations each account for at least 30% of the total measured signal. Approximately 75% of the mixed voxels 

exhibit R2 differences greater than the estimated uncertainties, thus providing evidence that the differentiation between the 

R2-rates of the two bins is indeed a meaningful result. 

All bin-resolved áE[R2]ñ plots in Figure 5 display a secondary cluster at high R2-values. Inspection of Figure 6B reveals that 280 

the fast relaxing cluster corresponds to the non-masked extra-meningeal tissues and, for the ‘Thin’ fraction, to the pallidum 

(region 1 in Figure 6B), a major component of the basal ganglia structures located deep in the brain. We also observe that 

the áE[R2]ñ map of the ‘Thick’ component features three main R2 populations: high R2 in the skull region (red voxels), low R2 

in peripheral brain regions (green voxels), and intermediate R2 values in the inner brain regions (yellow voxels). The various 

populations within the ‘Thick’ bin motivate the demarcation of three separate R2 regions within the (–3.5 < log(D||/D^) < 0.6, 285 

–10 < log(Diso/m2s-1) < –8.7) space; we then define the ‘Low’ (–0.5 < log(R2/s-1) < 1.2), ‘Medium’ (1.2 < log(R2/s-1) < 1.4), 

and ‘High’ (1.4 < log(R2/s-1) < 2) sub-bins of Figure 6C. To assign cerebral components to each of the sub-bins, we compare 

bin-resolved maps with a high-resolution longitudinal relaxation (R1) weighted image segmented in four tissue classes: WM, 

cortical GM, deep GM, and CSF. As evidenced by Figure 6C, the spatial distributions of the ‘Low’, and ‘Medium’ sub-

fractions roughly correspond to the expected distributions of cortical GM, and deep GM structures, respectively. Despite the 290 

similarities between bin-resolved and segmentation maps, the former possesses a grainier appearance and seem to miss a 

significant portion of deep GM tissue at the center of the slice. While the grainier aspect is caused by the higher noise of the 

R2-D correlation dataset, the absence of central GM is explained by the presence of anisotropic tissues in structures such as 

the pallidum (region 1 in Figure 6B) and the thalamus (region 2 in Figure 6B). Those two deep GM structures may then be 

contained within the ‘Thin’ bin, and not within the ‘Thick’ bin from which we defined the R2 sub-spaces. Joining the 295 

contributions of cortical and deep GM within a single tissue class offers further insight on the link between microscopic 

tissue composition and binning (see Figure 6D). Comparing the 3-tissue segmentation with maps of the ‘Big’, ‘Thin’, and 

‘Thick’ fractions confirms that the pallidum and part of the thalamus are captured by the ‘Thin’ bin. The two maps of Figure 

6D also demonstrate that the ‘Big’, ‘Thin’, and ‘Thick’ bins are indeed capable of resolving the contributions from CSF, 

WM, and GM, respectively. 300 

4 Discussion and Conclusions 

The proposed framework resolves intra-voxel heterogeneity on a 5D space of transverse relaxation rates R2 and diffusion 

tensor parameters (Diso,DD,q,f). Per-voxel brain composition is broken down into a non-predefined number of microscopic 

environments with clearly distinct relaxation and diffusion properties. The heterogeneity within a voxel is thus resolved as 

linear combinations of independent microscopic components that can be assigned to local tissue environments; on a global 305 

scale, the sub-voxel environments can be grouped into more general tissue classes. For healthy brain tissue, the detected 

microenvironments were classified into three broad bins whose diffusion properties respectively match those of the main 
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constituents of the brain: WM, GM, and CSF. The separation between contributions from the three bins provides a clean 3D 

mapping of WM, GM, and CSF that agrees well with a conventional R1-based tissue segmentation. Unlike automatic 

segmentation approaches, our protocol resolves tissue environments on a continuous scale defined by microscopic MRI 310 

properties, thereby allowing for a natural mapping of heterogeneity within a single tissue class, e.g., resolving anisotropic 

and isotropic regions within the thalamus. Hence, the presented protocol shows promise for neuroanatomy studies dealing 

with specific microscopic features such as nerve fiber tracking or free water mapping (Pasternak et al., 2009). Within a 

clinical setting, the ability to disentangle different tissue signals is expected to be useful for pathological conditions 

associated with intra-voxel tissue heterogeneity, e.g. tumor infiltration in surrounding brain tissue, inflammation of cerebral 315 

tissue, or replacement of myelin with free water. In the latter example, the proposed echo-times lead to an almost complete 

decay of the signal contributions from myelin domains, meaning that the effects of axonal demyelination would have to be 

probed indirectly by tracking a reduction of the signal fraction from anisotropic sub-voxel components. Besides resolving the 

various microscopic domains within a voxel, we were also capable of observing subtle differences in component-specific 

relaxation rates. As mentioned before, this information is unattainable with classical R2 distribution protocols (Whittall et al., 320 

1997), and its extraction relies on both the high dimensionality of our diffusion-encoding scheme and the sparsity of the 

(R2,Diso,DD,q,f) space (de Almeida Martins and Topgaard, 2018). The measurement of D-resolved transverse relaxation rates 

may complement previous work on tract-specific R1 rates (De Santis et al., 2016). 

At the cellular level, the translational dynamics of water inside the human brain is shaped by interactions with 

macromolecules and partially permeable membranes forming compartments with barrier spacings ranging from nanometers 325 

for synaptic vesicles and myelin sheaths to micrometers for the plasma membranes of the axons. The diffusion of water 

during the 0.1 s time-scale of MRI signal encoding is thus affected by a myriad of complex phenomena that are not explicitly 

accounted for in Eq. (2). Instead, we use the well-established approach of approximating the micrometer-scale water 

displacements as a distribution of anisotropic Gaussian contributions (Jian et al., 2007). The measured diffusivities may 

depend on the exact choice of experimental variables if the timing parameters of the gradient waveforms match the 330 

characteristic time-scales of displacements between cellular barriers (Woessner, 1963) or molecular exchange between tissue 

environments with distinctly different diffusion properties (Kärger, 1969). By augmenting our acquisition protocol with an 

experimental dimension in which the spectral profiles of the gradient waveforms are comprehensively varied (Callaghan and 

Stepišnik, 1996), microscopic barrier spacings could in principle be estimated by explicitly including the effects of restricted 

diffusion in the kernel of Eq. (2). Here we chose to minimize the influence of time-dependence by designing waveforms with 335 

similar gradient-modulation spectra. 

In the previous section, we mentioned that prolate (DD > 0) and oblate (DD < 0) diffusion tensors with |DD| < 0.5 result in 

similar signal decays (Eriksson et al., 2015). In the absence of orientational order, diffusion tensor anisotropy is detected as a 

deviation from a mono-exponential signal-decay, which, to first order, is proportional to DD2 (Eriksson et al., 2015). 

Consequently, the magnitude of DD can be easily determined at moderate b-values while the sign may require data acquired 340 
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with b-values up to 4×109 sm–2 (Eriksson et al., 2015) and echo-times comparable to the ones registered in this work; 

currently, such acquisition parameters can only be achieved with a specialized scanner (Jones et al., 2018). 

Resolving and separately characterizing intra- and extra-axonal compartments in brain tissue has been of long-standing 

interest in the MRI field (Does, 2018). Recently, Veraart et al. (Veraart et al., 2017) estimated subtle differences in R2 and 

diffusivity parameters for the intra- and extra-axonal components of human brain white matter by applying a constrained 345 

two-component model to data acquired with a conventional relaxation-diffusion correlation protocol relying on the Stejskal-

Tanner experiment. The obtained R2-values differ with less than a factor of two while the Diso-values are nearly identical and 

the DD-values are 1 (by constraint) and approximately 0.5 for the intra- and extra-cellular compartments, respectively. 

Comparing with the non-parametric distributions in Figure 2, we note that components with such similar properties would 

be virtually impossible to resolve in our minimally constrained approach despite the additional information added by the b-350 

tensor shape dimension. The limited resolution is consistent with the fact that Eq. (2) states an ill-posed inverse problem 

accommodating multiple non-unique solutions – probably also including the one with two ‘Thin’ components as assumed by 

Veraart et al. We suggest that the unconstrained inversion could be used as a first analysis tool to define the boundaries of a 

more ambitious model incorporating additional information, e.g. from microanatomy studies that is not directly observable in 

the MRI data. 355 

This work introduces and demonstrates a novel MRI framework, in which the microscopic heterogeneity of the living human 

brain is characterized via 5D correlations between the transverse relaxation rate R2, isotropic diffusivities Diso, normalized 

diffusion anisotropy DD, and diffusion tensor orientation (q,f). The correlations allow model-free estimation of per-voxel 

relaxation-diffusion distributions P(R2,D) that combine the chemical sensitivity of R2 with the link between microstructure 

and the diffusion metrics. The rich information content of P(R2,D) is reported through a set of 21 unique maps obtained by 360 

binning and parameter calculation in the 5D distribution space. Being specific to different tissue types while relying on few 

assumptions, the presented protocol shows promise for explorative neuroscience studies in which microscopic tissue 

composition cannot be presumed a priori. While the data in the main text is acquired with a 45 min protocol that is 

incompatible with the time frame of clinical MRI, the supplementary material includes parameter maps obtained with an 

abbreviated protocol in just 15 min. By including multi-band acquisition schemes we expect to speed up the acquisition to a 365 

clinically viable time of less than 10 min (Barth et al., 2016). Furthermore, the presented framework can be merged with 

MRI fingerprinting methodology (Ma et al., 2013), whose pattern matching algorithms may considerably boost the data 

inversion speed. 
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Data and Code availability 370 

The software analysis tools discussed in this paper are available for downloading from a public GitHub repository: 

https://github.com/JoaoPdAMartins/md-dmri (Nilsson et al., 2018b). The presented in vivo data may be directly requested 

from the authors. 
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Figure 1 Acquisition protocol for 5D relaxation-diffusion MRI. (A) Pulse sequence for acquiring images encoded for relaxation and 390 
diffusion in a 5D space defined by the echo time tE, and b-tensor trace b, normalized anisotropy bD, and orientation (Q,F). An EPI image 
readout block acquires the spin-echo produced by slice-selective 90° and 180° radio-frequency pulses. The 180° pulse is encased by a pair 
of gradient waveforms allowing for diffusion encoding according to principles from multidimensional solid-state NMR (Topgaard, 2017) 
(red, green, and blue lines). The signal is encoded for the transverse relaxation rate R2 by varying the value of tE. (B) Numerically 
optimized gradient waveforms (Sjölund et al., 2015) yielding four distinct b-tensor shapes (bD = –0.5, 0.0, 0.5, and 1) (Eriksson et al., 395 
2015). 
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Figure 2 Representative 5D relaxation-diffusion encoded signals S(tE,b) and distributions P(R2,D) for selected voxels in a living 
human brain. (A) Acquisition scheme showing tE, b, bD, Q, and F as a function of acquisition point. (B) Experimental (gray circles) and 400 
fitted (black points) S(tE,b) signals from three representative voxels containing white matter (WM), gray matter (GM), and cerebrospinal 
fluid (CSF). The presented signal data was acquired according to the scheme shown in panel A and is drawn with the same horizontal axis. 
(C) Nonparametric R2-D distributions obtained for both pure (WM, GM, CSF) and mixed (WM+GM, WM+CSF, GM+CSF) voxels. The 
discrete distributions are reported as scatter plots in a 3D space of the logarithms of the transverse relaxation rate R2, isotropic diffusivity 
Diso, and axial-radial diffusivity ratio D||/D^. The diffusion tensor orientation (q,f) is color-coded as [R,G,B] = [cosf sinq, sinf sinq, cosq] 405 
× |D||-D^|/max(D||, D^) and the circle area is proportional to the statistical weight of the corresponding component. The contour lines on the 
sides of the plots represent projections of the 5D P(R2,D) distribution onto the respective 2D planes. Panels (B) and (C) display the signals 
S(tE,b) and corresponding P(R2,D), respectively, for the same WM, GM, and CSF voxels. 
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 410 
Figure 3 Statistical measures derived from the relaxation-diffusion distributions. The ensemble of 96 distinct P(R2,D) solutions was 
used to calculate means E[x], variances Var[x] and covariances Cov[x,y] of all combinations of transverse relaxation rate R2, isotropic 
diffusivity Diso, and squared anisotropy DD2. The statistical measures were all derived from the entire R2-D distribution space on a voxel-
by-voxel basis. Histograms are used to represent the parameter sets calculated for three voxels containing binary mixtures of white matter 
WM, grey matter GM, and cerebrospinal fluid CSF. Each histogram comprises 96 estimates of a single statistical measure. The averages of 415 
statistical measures, áE[x]ñ, áVar[x]ñ and áCov[x,y]ñ, are displayed as parameter maps whose color scales are given by the bars along the 
abscissas of the histograms. The crosses and arrows identify the heterogeneous voxels analyzed in the histograms; notice that the signaled 
points correspond to the average (as measured by the median) of the ensembles of plausible solutions shown in the histograms. 
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 420 
Figure 4 Parameter maps with bin-resolved means of the relaxation-diffusion distributions. (A) Division of the R2-D distribution 
space into different bins. The distribution space was separated into three bins (gray volumes) named ‘Big’, ‘Thin’, and ‘Thick’ that loosely 
capture the diffusion features of cerebrospinal fluid CSF, white matter WM, and gray matter GM, respectively. The 3D scatter plots 
display the nonparametric R2-D distributions corresponding to the CSF (top), WM (middle), and GM (bottom) voxels selected in Figure 2. 
Superquadratic tensor glyphs are used to illustrate the representative D captured by each bin. (B) Parameter maps of average per-bin means 425 
(color) of transverse relaxation rate áE[R2]ñ, isotropic diffusivity áE[Diso]ñ, squared anisotropy áE[DD2]ñ, and diffusion tensor orientation 
áE[Orientation]ñ. The orientation maps (column 4) are color-coded as [R,G,B] = [Dxx, Dyy, Dzz]/max(Dxx, Dyy, Dzz), where Dii are the 
diagonal elements of laboratory-framed average diffusion tensors estimated from the various distribution bins. Brightness indicates the 
signal fractions corresponding to the ‘Big’ (row 1), ‘Thin’ (row 2), and ‘Thick’ (row 3) bins. The white arrows identify deep gray matter 
structures. 430 
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Figure 5 Uncertainty estimation of the statistical measures derived from the relaxation-diffusion distributions. 3D density (color) 
scatter plots show the relationship between average initial signal intensity áS0ñ, the average of mean values derived from the R2-D 
distributions áE[x]ñ, and their corresponding uncertainties s[E[x]]. For display purposes, signal intensity values were normalized to the 435 
maximum recorded áS0ñ, max(áS0ñ). The contour lines on the side planes show 2D projections of the point density function defining the 
distribution of data points. The average mean values of transverse relaxation rate áE[R2]ñ (row 1), isotropic diffusivity áE[Diso]ñ (row 2), 
and squared anisotropy áE[DD2]ñ (row 3) were computed from all voxels whose áS0ñ was greater than 5% of max(áS0ñ). The resulting 
dataset comprises 55327 voxels spread throughout all slices of the acquired 3D volume. The uncertainties of áE[R2]ñ, áE[Diso]ñ, and 
áE[DD2]ñ correspond to the median absolute deviation between measures extracted from 96 independent solutions of Equation (2): 440 
s[E[R2]], s[E[Diso]), and s[E[DD2]], respectively. All displayed data was derived from both the entire R2-D space (column 1), and the 
‘Big’ (column 2), ‘Thin’ (column 3), and ‘Thick’ (column 4) bins defined in Figure 4A. 
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Figure 6 Per-bin relaxation properties and tissue composition. (A) Transverse relaxation properties specific to each of the ‘Thin’ (red) 445 
and ‘Thick’ (green) bins defined in Figure 4A. The color-coded composite images (top) and histograms (bottom) display the fractional 
populations and average mean transverse relaxation values áE[R2]ñ of the two bins. The first column displays all of the ‘Thin’ and ‘Thick’ 
voxels, while the two other columns focus on ‘Thin’+’Thick’ mixtures wherein the bin-specific áE[R2]ñ values exhibit either significant 
(second column) or non-significant (third column) differences. (B) Bin-resolved signal fractions (brightness) and average per-bin means 
(color) of R2, and squared anisotropy DD2. Regions 1 and 2 identify microstructural properties singled-out in the Results section. (C) 450 
Subdivision of the ‘Thick’ bin into three different R2 sub-spaces. The contributions from different sub-bins are compared with a high-
resolution R1-weighted image segmented into four different tissues: white matter WM, cortical gray matter GM, deep GM, and 
cerebrospinal fluid CSF. Additive color maps display the spatial distribution of sub-bin fractions (from low to high R2: green, red, blue), 
and of cortical (green) and deep (red) GM. (D) Color-coded composite images showing the contributions of different bins (red=Thin, 
green=Thick, blue=Big) and conventional R1-based segmentation labels (red=WM, green=cortical+deep GM, blue=CSF). 455 
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